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AbstracL Using mean-field free-energy density functionals, we studied the structure of a 
liquid drop embedded in a vapour background of a one-component fluid, in the absence of 
an external Keld, using exponentially decaying fluid-fluid attractive intenctions (characterized 
by an inverse range panmeter A) ofthe type employed by Sullivan. In Sullivan’s original model 
and afterwards, 1 was specified by the arbitrary condition Ad = 1 (d is the hard-sphere diameter). 
Now, this choice is relaxed and the potential is allowed to have variable inverse range parameter 
as well as amactive forces between fluid molecules: as a result. some of the interfacial quantities 
vary with 1 and some do not. Those influenced by h are the density profiles. principal tensors. 
surface tensions (Ymrsh and Ythcn) according to the mechanical and thermodynamic routes, the 
radii of the dividing surfaces and the homogeneous radius; while those not influenced by A are 
the pressure difference Ap across the drop. the density p(0) at the drop centre, the equimolar 
surface tension yc and the existence of a homogeneous phase inside the drop; however large the 
drop may be, this behaviour of the drop depends only on the supersaturation. 

1. Introduction 

Several years ago Sullivan developed an elegant microscopic theory of wetting of a solid 
substrate by a bulk vapour phase, treating the solid as an external one-dimensional potential 
V ( z )  acting on the atoms of the fluid and considering planar dividing surfaces [l]. In 
Sullivan’s original model the attractive part w(r )  of the fluid-fluid interaction is a decaying 
exponential with an inverse range parameter AF identical to that Aw of the solid-fluid 
attractive potential, which is also exponentially decaying, i.e. AF = hw = A. As a result 
of this choice, the wetting of the solid substrate changes continuously from partial wetting 
to complete at some temperature Tw. This wetting transition is second-order, contrary 
to Cahn’s phenomenological theory, predicting a first-order transition. In an attempt to 
resolve this discrepancy, Evans ef al [2] and Teletzke ef a1 [3] relaxed the condition of 
equal inverse range parameters and studied the corresponding generalized Sullivan model, 
concluding that the wetting transition can be first- or second-order depending on the ratio 
of the inverse range parameters and the strength of the solid-fluid interaction (see also [41). 
Thus the choice AF # hw yields significant changes in the wetting behaviour of the system. 
In addition, Sullivan’s original model includes the arbitrary condition Ad = 1 (also used 
elsewhere [2,5]), chosen to simplify the mathematical expressions. This choice obscures 
the possible influence of A on the interfacial properties of the system under consideration. 

In an earlier communication [6 ] ,  Sullivan’s model was applied to a one-component 
system comprising a liquid drop and its bulk vapour in the absence of an external field. In 
this case, there was only one inverse range parameter, h~ 1, associated with the fluid- 
fluid attractive interaction, chosen such that hd = 1. However, this restriction is arbitrary, 
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so it can be relaxed, and h behaves as a degree of freedom, taking values in the domain 
(0, CO). The other degree of freedam is the temperature T for the planar interface and the 
doublet (T, p y s )  for the spherical interface; pvs is the bulk vapour density. Relaxing this 
restriction, the attractive potential and forces acquire a variable range, because A-’ is a 
measure of the range of these forces, and I influences some of the interfacial quantities 
of the system (i.e. the density profile, principal tensors, surface tensions (Ymcch and yherm) 
according to the mechanical and thermodynamic routes, the radii of the dividing surfaces and 
the homogeneous radius Rho,,,, which is the radius of the sphere, inside the drop, wherein the 
density remains constant) while some are constant with respect to I (the pressure difference 
Ap across the drop, the density p ( 0 )  at the drop centre and the equimolar surface tension 
ye). In addition, A does not influence the distribution of the fluid molecules inside the drop 
(interior phase), in that a large drop does not always encompass a homogeneous phase, this 
property depends only on the supersaturation. 

In section 2 we outline, in brief, the mean-field theory (MFT) of the density profiles, 
pressure tensor and surface tensions for a planar and spherical interface, with A being a 
variable. Section 3 is devoted to the discussion of the numerical results, while in section 4, 
we discuss the results and compare them with the ones for hd = 1 [6]. 

2. Theory 

2. I .  Densiry profie 

We consider the general grand potential functional for a one-component system (in the 
absence of an external field) 

Qv[p(r)l = ldr(fh[P(T)I + i p ( T ) [  P(T’)W(lr-T’l)dr’-ppP(T) 

where p ( r )  is the average number density at point T ,  p the bulk vapour chemical potential 
and V the volume of the system. The repulsive force contribution to the Helmholtz free 
energy is treated in the local-density approximation in that fh[p(r)] is the Helmholtz free- 
energy density of a uniform hard-sphere fluid at density p ( r ) ,  while the attractive forces 
are Treated in mean-field approximation so that w(r )  is the attractive part of the pairwise 
potential between two fluid molecules [5-8]. 

The equilibrium density p ( r )  minimizes the functional (2.1) and, by setting 
8Q[p(r)]/8p(r) = 0, the Euler-Lagrange equation results: 

(2.1) 1 V 

where ph[p(T)] = afh[p(r)l/ap(r) is the hard-sphere chemical potential. When (2.2) is 
substituted into (2.1) the equilibrium grand potential Q v  results. The solution to the integral 
equation (2.2), once W ( T )  is known, yields the density profile for a given geometry of the 
system. However, (2.2) can be converted to a non-linear second-order differential equation 
by choosing properly the interaction potential, because in this case the calculations become 
less expensive and the numerical methods for the solution of differential equations are better 
developed [I]: 

w(r) = -(orh3/4x)e-”‘/Ar. (2.3) 
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Here 01 is 

and A is an inverse range parameter; the influence of h on the system was overlooked since 
hd was put equal to unity previously. This is an arbitrary choice, mainly to simplify the 
mathematical expressions and to make the calculations easier. In a way, this restriction on 
h obscures its influence on the behaviour of the system; so we consider that this choice (i.e. 
i d  = 1) is no longer valid~and regard it as a continuous variable taking positive values. 

For the calculations that follow, the Carnahan-Starling equation of state for hard spheres 
is adopted: 

P h ( P )  = PkBT(1 + r j  f V 2  - rj3)/(1 - 11)’ (2.5) 

where r j  = npd3 /6  is the packing fraction, T the temperature and kB the Boltzmann constant. 
The configurational part of the hard-sphere chemical potential is given by 

Ph@) = k iT[ ln  17 f @V - 9V2 + 3rj3)/(1 - rj )3)1.  (2.6) 

The critical density pc and temperature T, of the above model are given by the equations 
Ill: 

pcd3 = 0.249 f f / (k~T,d’)  = 11.102. (2.7) 

Initially we assume spherically symmetric solutions, p( r )  = p ( r ) ,  to equation (2.2) and 
that the centre of the drop coincides with the origin of the coordinate axes. The integration 
in (2.2) over the polar angles 8, 4 can be done analytically: 

where U = Ar, the dimensionless radial distance from the centre of the drop. By 
differentiating twice the integral equation (2.8) with respect to U ,  we obtain 

(2.9a) 

which is identical to that found in [6].  
In the system under consideration (either with spherical or planar interface) A is 

considered as an additional independent variable. The other independent variable is 
r ,  so U cannot be treated, any longer, as the independent variable in (2.9a), since it 
contains both h and r. Instead, another spatial variable is introduced by the transformation 
U = hr = (hd)(r /d)  = Au, so that (2.9a) is transformed into 

(2.96) 

and A is now separated from r .  The new reduced radial distance is now the variable U = r /d  
and A = hd is the reduced inverse range parameter. 
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The differential equation (2.9b) is supplemented by the proper boundary conditions, 
which are identical to those in [6],  i.e. 

&(o) = 0 /Lh(m) = pl  /Lh(m) = 0 (2.10) 

so that the solution to (2.9b) is bounded; the prime denotes differentiation with respect to 
distance. 

Considering as dependent variable the packing fraction q(u)  instead of p+(u), on 
substituting the CamahanStarling relation (2.6) in (2.9b) it yields, for U # 0, 

~ " ( u )  = - ( ~ / U ) O ' ( U )  - BI(v)V'(~) - A2[Bz('I) + B 3 ( M v ) l  (2.11) 

subject to the boundary conditions 

q'(0) = 0 q(00) = 'Iv q'(00) = 0 (2.12) 

where 

(2.13a) 

(2.13b) 

and ,9 = (kST)-] .  

about U = 0 (see [6]):  
In the neighbourhood of the drop's origin, the solution is expanded in a power series 

q(u)  = q + (uz/2!)77"(0) + (u4/4!)7'"(0) as U + 0 (2.14) 

where q ~ ( 0 )  and the derivatives are 

p ( 0 )  = -i 3 I  B d q )  + 4Bdq)l  (2.154 

(2.1Sb) 

For the subsequent calculations, all the quantities and equations are transformed to the 
dimensionless 'reduced' units: 

/L' p / ( k s T )  p* = d 3 p / ( k ~ T )  T' = T/Tc  

y* = d 2 y / ( k s T )  p' = pd 
(2.16) 

U* = a / ( k ~ T d ~ )  = 11.102/T'. 

Thus 

p*(p*, T') = pE(p*, T*)  - u*p* 

p*(p", T*)  = PE@", T*)  -u'p"/2. 
(2.17) 
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Figure 1. Attractive potential w*(A,  U) [4r/(ll.lOZk~Td]w(A, U) vmus (A, v) .  

Although the asterisks, for simplicity in the expressions, will be suppressed, all the results 
will be with respect to the above dimensionless variables (2.16). The interaction potential 
(2.3) in terms of A and U can be Written as 

w ( A ,  U) = -(11.102k~T,/4ir)A3 exp(-Au)/Au (2.18) 

which is now an explicit function of the two variables A and U; its graph appears in figure 1. 
The attractive potential w(A, v )  as a function of A (constant distance U) has a minimum 
given by the relation AV = 2, while for constant A it is an increasing function of the 
distance, tending to zero as U diverges. 

According to Gibbs phase rule, a one-component two-phase system has only one degree 
of freedom, and as such the temperature T is chosen here. In the present case, the system 
with a planar interface has an additional degree of freedom, namely A. The system with 
a spherical interface possesses two extra degrees of freedom, the bulk vapour density pvs 
(varying in the interval (,ovc, pap), where pvc is the vapour density for a planar dividing 
surface at the same temperature T and pvsp the corresponding spinodal density) and the 
reduced inverse range parameter A; this is not the only possible choice. For a given value 
of T and pvs one can find an infinite number of drops that correspond to the possible values 
of A; all these drops have identical bulk vapour density and density at the drop's origin 
p(0) that is identical to the one for A = 1 [6]. 

The variation of A also influences the behaviour of the liquid-vapour system with a 
planar dividing surface. In this case the governing equation resulting from (2.2) is 

where zI = hz and the dividing surface coincides with the x y  plane. When (2.19) is 
differentiated twice with respect to z l ,  it yields 

d*Ph(Zi)/dZ: - P h ( Z i )  i- P = - W ( Z i )  (2.20) 
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(see [I]). The solution to (2.20) has to obey the asymptotic behaviour 

Ph(m) = kl  Pb(m) = 0. (2.21) 

dPdZi)/dZi = -{[Ph(Zl) - PI2 - 2dPh(Z1) - Pl11’2 

The differential equation (2.20) can be integrated once, yielding 

(2.224 

on recalling (2.21), the minus sign in front of the square root is necessary because the bulk 
phase is vapour and p is the bulk pressure [l]. 

As previously, the independent variable z1 in (2.22~) is replaced so that the A 
dependence is separated from the z dependence. This is achieved through the transformation 
21 = hz = ( h d ) ( z / d )  = A t  and (2.22a) becomes 

dPh(t)/d< = -A{[l(h(<) - PI2 - 2’dPh(<) - P11”2. (2.22b) 

In (2.227) we consider again as dependent variable the packing fraction q ( t )  instead of 
wh(5). Thus on recalling the Carnahan-Starling relation (2.6), (2.22b) becomes 

dq(t)/dt = -[A/Ai(q)l([Ph(f?) -PI2 - 2a[Ph(V) - (2.23) 

where Ai(q) is given by (2.13~). 

2.2. Pressure tensor and surface tension 

The system under consideration (with either a spherical or planar dividing surface) consists 
of, at least, one homogeneous phase and one inhomogeneous. In the former case, the two 
pressure tensor components (normal PN and transverse PT) are equal to each other and 
identical to the pressure of the respective phase. In the latter case, these components are 
unequal and vary with distance, in general. The only condition satisfied by the pressure 
tensor p ( r )  is the vanishing of its divergence owing to the mechanical equilibrium of the 
system under consideration, i.e. 

V.p(r)=O (2.24) 

in the absence of an external field [6,7]. 

pT(r) components, which are related by the equation 
The pressure tensor for a spherical interface consists of the normal pN(r) and transverse 

p&) = @ / r ) b ~ ( r )  - PN(~) I  (2.25) 

a result of (2.24) for the respective geometry. Integrating (2.73) from inside to outside 
yields 

(2.26) 

The left-hand side can be considered as one of the possible definitions of the pressure 
difference Ap across the drop. Equation (2.25) can also be regarded as a differential 
equation for pN(r). once m(r) is known, i.e. 

zrdPN(r)/dr 1 + m ( r )  = p d r )  (2.27~) 
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so that 

(2.276) 

The p r ( r )  component can be identified with minus the grand potential free-energy 

a ( r )  = -o[po(r)l (2.28) 

density, i.e. 

where po(r) is the equilibrium density. On substituting (2.2) into (2.1) we get 

a ( r )  = P ~ , [ p ~ ( r ) l +  +Po@) po(~ t )w( l r  - T I  Ildrt. (2.29) 

Multiplying (2.96) by &(U) and integrating from a point deep inside the drop to one 
s, 

in the bulk vapour phase yields 

~ ~ ~ ~ P ~ ~ ~ Z ~ ~ ~ ~ P ~ ~ ~ ~ Z + ~ ~ ~ z ~ ~ ~ P ~ l ~ u ~ i ~ e ~ ~ ~ L I : ~ P ~ ~ - 1 \ 2 ~ ~ ~ ~ ~ ~ ~ ~ ~ 2 + 2 ~ A 2 ~ ~ ~ P ~ l i n s i ~ e  

( 2 . 3 0 ~ )  

The quantity in the bracket equals 2aA2p(p) since &(U) vanishes at both ends and ( 2 . 3 0 ~ )  
can be written 

(2.30b) 

which is a generalization of the Young-Laplace equation. Its left-hand side can be 
considered as another definition of the pressure difference A p  that monitors the variation 
of the density profile in the interfacial region and inside the drop (for a small one). 

Another important quantity is the surface tension, which depends on the position of the 
dividing surface, in general. It is defined as the grand potential per unit surface area and, 
in the reduced units (2.16), is given by (see 161) 

m 1 
y(Ry; Ap) = - 3aAR; Jld [ w 4 , ( ~ ) l 2 d ~ +  )&AP (2.31) 

where R, is the radius of the dividing surface. For the radius R, there are various alternative 
choices due to the different dividing surfaces. One such choice is the radius R, of the surface 
of tension, given by 

(2.320) 

for which the curvatnre term in the Helmholtz free energy vanishes and the Young-Laplace 
equation retains its form [7] 

A p  = 2y(Rs ) /R , .  (2.326) 

Another choice for R, is the radius Re of the equimolar dividing surface, given by the 
equation [7] 

( 2 . 3 2 ~ )  

The mechanical route to the surface tension is defined through the relations ( 2 . 3 2 ~ .  b), 

(2 .324 

while the thermodynamic route is defined through (2321.. c) and 
2 Rs = [3ym - (gym - ~ Y ~ ~ R & ) ~ / ~ I / A P  

see [6,7]. 
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3. Results 

3. I .  Density profiles 

values of the two independent variables qv5 and A at a fixed reduced temperature T* = 0.8 
used also in [6]. The variable qvs assumes values within the interval (qvc, qvsp), where 
qw = 0.021 718 09 is the coexisting vapour packing fraction and qVv = 0.061 099 63 the 
corresponding spinodal packing fraction. 

Let R;(A) be the reduced smallest distance from the centre of the drop where the 
density p(r,  A) assumes its bulk value pR. It was found in the numerical calculations that 

(3.la) 

The differential equation (2.11) with the boundary conditions (2.12) was solved for various 

R;(A) = R;(A = I)/A 

resulting from the more general expression 

R;(Ai)/R;(Az) = &/Ai. (3.lb) 

So, instead of specifying A, R;(A) is given a value and A is calculated from (3.1~) 
once R;(A = 1) is known. The chosen values for R;(A) were 50, 40, 30, 20, 10 and 
R;(A = 1). Equation (2.11) was solved for pvs = 0.05, 0.075 and 0.1. Their plots appear 
in figure 2 and each individual density profile? in any plot is labelled by the corresponding 
A. The density profile for pvs = 0.05 (small supersaturation) is characterized by the 
presence of a homogeneous phase inside the drop, evidenced by the straight line on the left- 
hand side of the profile, even for the smallest drop R;(A) = 10 (Rham is non-vanishing). 
However, for the other two densities (pvs = 0.075 and 0.1, high supersaturation) the extent 
of the homogeneous phase inside the drop is hardly perceptible even for the largest drop 
R;(A) = 50, i.e. the behaviour of the density profiles in these cases is nearly identical 
to that for A = 1, so Rhom is now negligible. This behaviour was also observed for 
very large radii, R;(A) = 100, 500, 1000 and 1500, for pvs = 0.05 and 0.1 (figure 3). 
These results indicate that a large drop, which may encompass a homogeneous phase (a 
necessary requirement of Laplacian thermodynamics) for a given bulk vapour density pvs 
(small supersaturation), does not always do so for a larger ,avs value. The existence or 
not of a homogeneous phase inside a drop is independent of A and depends only on the 
supersaturation, as in the case A =~ 1. Thus, although A is a variable, the potential (2.3) 
cannot affect the structure of the system and the attractive forces behave as a uniform 
background potential. The hard-sphere potential still dominates the structure; their only 
effect is either to spread (that is, increase the extent 00 or to contract the corresponding 
density profile for A = 1 161, to accommodate the particles of the interior phase into the 
available space, but without changing the corresponding structure. For the radii R;(A) 
under consideration, the interfaces for pus = 0.05 separate two homogeneous phases, while 
for pvr = 0.075 and pv. = 0.1 the respective interfaces separate two phases that are either 
inhomogeneous or negligibly homogeneous (Rho,,, negligible). This behaviour of the density 
profiles, for a specified pvr, inside a drop is brought out by figure 4, where Rhom is plotted. 
For small A (or equivalently, large drops) only for the smaller pvr = 0.05 is Rhom significant 
and the corresponding drops contain a homogeneous ‘bulk’ phase. 

As the supersaturation is lowered, the bulk vapour density pvs tends towards the planar 
interface density pvs = 0.04147849 at the same reduced temperature T* = 0.8; the 

Remark. The density profiles in figures 2 and 3 should tend smoothly to the respective bulk value but this was 
not achieved m satisfactorily as in figure 6 owing to computational problems in (2.11). 
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Figure 2. (a) Packing fraction q ( u ,  A) for pvr = 0.05 Venus reduced radial distmce v Iaklled 
by A: (i) 0.4459, (ii) 0.55738. (iii) 0.743 17, (iv) 1, (v) 1.11476, (vi) 2.22952. (b) Packing 
fraction ~ ( u .  A) for prr = 0.075 versus reduced radial distance U labelled by A: (i) 0.222 18, (ii) 
0.2777.(iii)0.37031,(iv)'0.55546, (v) I. (vi) 1.1109. (c)Packingfractionq(v. A) forp,, = 0.1 
vmus reduced radial distance U labelled by A: (i) 0.18786, (ii) 0.23483. (iii) 0.313 11, (ivl 
0.46966, (v) 0.93932, (vi) I .  
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Fiyre  3. (U) Packing fraction n(v, A) for pv3 = 0.05 Venus d i a l  distance U for v"i0us 
R+(A) values: (i) 1500, (ii) 1000, (iii) 500, (iv) LOO. (b )  Packing fraction ~ ( u .  A) for pvJ = 0.1 
versus reduced ndid distance U for various R$(A) values: (i) 1500. (ii) 1000, (iii) 500, (iv) 
100. 

governing equation is (2.23), which also depends on A. In this case, the system is not 
finite but extends from -CO to +CO; it behaves as a very large drop corresponding to the 
density pvc. This behaviour depends strongly on A, in the sense that the smaller the A the 
wider is the interfacial region and the longer is the distance from the origin of the axes, the 
density p ( c ,  A) attains its bulk value pvc, because the attractive forces are now of longer 
range. The existence of the homogeneous phase in the left-hand part of the density profile 
(liquid phase with density pLc = 0.586731 31) is now more evident (see figure 5). 

3.2. Pressure tensor and surface tension 

After the calculation of the density profile, all the other interfacial quantities can be 
evaluated. Either system under consideration (the one with spherical and the other with 
planar interface) possesses a particular symmetry that is also reflected in the corresponding 
pressure tensor p ( r ) ,  which, in both cases, consists of the two principal components pN(r) 
and pT(r) .  First, we examine the system with spherical symmetry. Both components p ~ ( r )  
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100 I Z 0 [  

R 

0 1 2 3 4 5 6  

Figure 4. Radius R e m  of the homogeneous-phase sphere versus A: (i) Pvs = 0.05, (ii) 
p, = 0.075, 0.1. 

~ ~ ~~ ~~~~ ~ ~ ~~~ ~ ~~~~ ~~ ~~~ 

120 140 b loo 
0 20 40 60 

Figure 5. Packing fraction q(u, A) far the flat interface (with density p,) as the same reduced 
temperature T' = 0.8 versus reduced distan& 1 for various A (i) 0.18786. (ii) 0.23483, (E) 
0.313 11, (iv) 0.46966, (v) 0.93932, (vi) 1. 

and p&) depend only on the radial distance r from the origin of the drop and are given by 
(2.27b) and (2.29), respectively. For a given pvr. regardless of A, they vary significantly 
within the interfacial region; but for U > R+(A) they join smoothly to their~common value, 
coinciding with the bulk vapour pressure p v  ( p ~ ( c o )  = p ~ ( c o )  = p J ;  also both coincide 
at U = 0 (figure 6).  We also have the same situation as in the density profiles: for the drops 
with pVs = 0.05 (small supersaturation), both components possess a plateau, reflecting the 
homogeneous phase existing inside the drop, which does not happen for the other two drops 
with pVs = 0.075 and 0.1. For a specific pvr and its associated A values, the profiles of 
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Figure 6. (U) Pressure tensor components far Q~~ = 0.05 versus d i a l  distance U for various 
A: (i) 0.4459. (ii) 0.55738, (iii) 0.743 17. (iv) I. (v) 1.11476, (vi) 2.22952. (b) Pressure tensor 
componem for pur = 0.075 versus radial distance U for various A: (i) 0.222 18, (ii) 0.2777, 
(iii) 0.37031. (iv) 0.55546, (v) I, (vi) 1.1109. (e) Pressure tensor components for pv, = 0.1 
versus radial distance v for various A:  (i) 0.18786. (ii) 0.23483. (iii) 0.313II. (iv) 0.46966, 
(v) 0.93932, (vi) I. 
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pN(r) and p T ( r )  are similar to those For A = 1, except that these are either spread if A < 1 
or contracted if A P 1; also all the plots have the Same minimum value occurring at different 
radial distances. For all the profiles the interface is initially under tension (pN(r) > pr(r)) 
while for larger distances it is under compression (pN(r) < p T ( r ) )  only for pvs = 0.05. 

For, the planar interface, p&) is always constant, even in the interfacial region, and 
equal to the bulk vapour pressure, PN(<) = p ( p v c )  = pflat for all 3 and A values. While 
p ~ ( 3 )  varies with distance according to (2.29), it is mainly smaller than p N ( 3 )  for all A 
values, but becomes greater only in a small region on the vapour side of the profile before 
they join smoothly towards ptdr (figure 7). 

-0.08' 
0 20 40 100 I20 140 

Figure 7. Flat interface pressure tensor componenrs at the same reduced tempemure 7' = 0.8 
versus < for various A: (i) 0.18786. (ii) 0.23483, (iii) 0.313 I I, (iv) 0.469 66. The straight line 
is P N ( F )  = PLC. 

For a spherical interface, the pressure difference Ap is an ill-defined quantity (this does 
not happen for a planar interface); as a result, this behaviour affects the surface tension 
(2.31) and the radii (2.32a, d). since both depend explicitly on Ap and A (see [6]). For the 
numerical calculations, A p  was calculated from (2.30b); although this expression depends 
explicitly on A, the numerical result was not sensitive to A and thus A p  is a constant 
for a given pvs and equal to that for A = 1 [6]. For the bulk vapour densities under 
consideration (pv5 = 0.05, 0.075 and ~0.1) the corresponding surface tensions ys according 
to the mechanical route and the surface tension yflst for the flat interface decrease as A 
increases. They join smoothly at about A Y 8. tending to zero as A + CO. and they 
seem to diverge as A + 0 (figure 8(a)). For A < 0.4 and A > 8 they vary slowly and 
their difference is perceptible only in the interval 0.6 < A < 3. In addition to ys, for 
density pvs = 0.05 the surface tension yherm according to the thermodynamic route and 
the equimolar ye were calculated (see figure 8(b)); Xhcm decreases as A increases and is 
always below ys, while ye is constant with respect to A ,  contrary to what one would expect. 
This behaviour OF ye is a significant drawback, for it cannot be considered as a measure 
of the surface tension; ys and y,herm join smoothly and vanish as A -+ CO, and they differ 
significantly only in the region 0.5 < A < 4. 

The associated radii R, decrease as A increases for all bulk vapour densities; their 
values reflect the extent of the corresponding drops. The radii R, for pVb = 0.075 and 0.1 
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Figure 8. (a) Surface tension yr versus A labelled by the bulk vapour density pur: (i) 0.075, (ii) 
0.05, between them is that for pur = 0.1, (iii) y ~ a  (& = 0.04147849). (b)  Surface tensions 
versus A for pus = 0.05 according to (i) mechanical route, (it) thermodynamic route, (iii) ys. 

(large supersaturation) are nearly identical; they differ considerably with R, for pvs = 0.05 
but, ultimately, they all join smoothly for A > 10, tending to zero as A + 00 (figure 9(a)). 
The other radii (Rherm. Re) display a~similar behaviour, as well. In figure 9(b) we plotted 
R,,  Rtherm, Re for pvs = 0.05; R, and R, practically coincide (this does not imply that 
Tolman's length 6 = Re - Rs vanishes), differ from Rhem in the interval 0.5 < A < 6,  
and they join smoothly at about A N 10, tending to zero as A + 00. These radii behave 
similarly for the other two bulk vapour densities. 
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4. Discussion 

The repulsive forces play a primary role in the structure of most fluids far away from the 
critical region. However, the slowly varying attractive forces affect the structure in an 
indirect way, in that the form of the density profile, as a function of A, is left unchanged in 
comparison with the case A = 1, except that it is either shrunk (A > 1) or spread (A c 1) 
to accommodate inside the drop the available number of particles of the interior phase for 
each A. ~~ 

A necessary prerequisite of bulk thermodynamics is that a large drop encompasses 
a homogeneous bulk phase so that Lacplace's equation (2.326) is valid. However, this 
condition is valid only in the case of small supersaturation. The volume of the drop cannot 
affect the distribution of matter in its interior. A (attractive forces) determines the radius 
R; of the drop while the distribution of particles of the interior phase is determined by the 
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bulk vapour density hS (i.e. hard-sphere repulsions). Thus a large drop R; = 50, or even 
a very large one R; = 1500, encompasses a homogeneous phase for pvs = 0.05 but it does 
not for pvs = 0.1. This distinct influence of repulsions and attractions on the system is also 
reflected in the profiles of the principal tensors. 

Both tensions ys and ybm decrease on increasing A (or equivalently, on decreasing 
the corresponding radii R, and Rbehcrm) since the drop diminishes as A -+ W. The tensions 
f i  for pvs = 0.05, 0.075 and 0.1  and^ ynat, as functions of A, coincide for A < 0.4 and 
A > 5 (that is, for smaller and larger drops in comparison with those for A = 1). Thus, it 
is sensible to use y ~ ~ ,  in place of yr for this range of A values. An interesting result is that 
ye, on the one hand, is constant as a function of A and, on the other, exhibits a distinctly 
.different behaviour in comparison with ys and ybem although their corresponding dividing 
surfaces are vety close to each other. This peculiar behaviour of ye is due to the way the 
equimolar dividing surface is defined through the surface excess density, which is 

where R, is the radius of the dividing surface. The equimolar dividing surface is determined 
by the condition T(R,) = 0. As a result of this requirement, the equimolar interface contains 
an equal number of particles on either side, i.e. 

So there are no excess particles in the interface under consideration for any A, which would 
change the value of ye as a function of A. Thus ye remains constant and is determined 
solely by the bulk vapour density which, in turn, is determined by the repulsive (hard- 
sphere) forces. However, whatever finite value any of the surface tensions assumes, the 
work of formation of a drop 

W = ( 4 z / 3 ) R 2 y  (4.3) 
ultimately vanishes as R + 0. 
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