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Abstract. Using mean-field free-energy density functionals, we studied the structure of 2
liquid drop embedded in a vapour background of a one-component fluid, in the absence of
an external field, using exponentially decaying fluid-fuid attractive interactions {characterized
by an inverse range parameter A) of-the type employed by Sullivan. In Sullivan's original model
and afterwards, A was specified by the arbitrary condition Ad = 1 (d is the hard-sphere diameter).
Now, this choice is relaxed and the potential is allowed to have varinble inverse range parameter
as well as atiractive forces between fluid molecules; as a result, some of the interfacial quantities
vary with & and some do not. Those influenced by A are the density profiles, principal tensors,
surface tensions (Vmech and iperm) according to the mechanical and thermodynamic routes, the
radii of the dividing surfaces and the homogeneous radius; while those not influenced by A are
the pressure difference Ap across the drop, the density #(0) at the drop centre, the equimolar
surface tension . and the existence of a homogeneous phase inside the drop; however large the
drop may be, this behaviour of the drop depends only on the supersaturation.

1. Introduction

Several years ago Sullivan developed an elegant microscopic theory of wetting of a solid
substrate by a bulk vapour phase, treating the solid as an external one-dimensional potential
V(z) acting on the atoms of the fluid and considering planar dividing surfaces [1]. In
Sullivan’s original model the attractive part w{r) of the fluid—fluid interaction is a decaying
exponential with an inverse range parameter Ap identical to that Aw of the solidfluid
attractive potential, which is also exponentially decaying, i.e. AF = Aw = A. As a result
of this choice, the wetting of the solid substrate changes continuously from partial wetting
to complete at some temperature Ty. This wetting transition is second-order, contrary
to Cahn’s phenomenological theory, predicting a first-order transition. In an attempt to
resolve this discrepancy, Evans et af [2] and Teletzke ef al [3] relaxed the condition of
equal inverse range parameters and studied the corresponding generalized Sullivan model,
concluding that the wetting transition can be first- or second-order depending on the ratio
of the inverse range parameters and the strength of the solid—fluid interaction (see also [4]).
Thus the choice Ar £ Aw yields significant changes in the wetiing behaviour of the system.
In addition, Sullivan’s original model includes the acbitrary condition Ad = 1 (also used
elsewhere [2,5]), chosen to simplify the mathematical expressions. This choice obscures
the possible influence of A on the interfacial properties of the system under consideration.

In an earlier communication [6], Sullivan’s model was applied to a one-component
system comprising a liquid drop and its bulk vapour in the absence of an externat field. In
this case, there was only one inverse range parameter, Ap = A, associated with the fluid—
fluid attractive interaction, chosen such that Ad = 1. However, this restriction is arbitrary,
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so it can be relaxed, and A behaves as a degree of freedom, taking values in the domain
(0, co). The other degree of freedom is the temperature T for the plapar interface and the
doublet (T, py) for the spherical interface; pys is the bulk vapour density. Relaxing this
restriction, the attractive potential and forces acquire a variable range, because A~' is a
measure of the range of these forces, and A influences some of the interfacial quantities
of the system (i.e. the density profile, principal tensors, surface tensions (Vmech ad perm)
according to the mechanical and thermodynamic routes, the radii of the dividing surfaces and
the homogeneous radius Ryom, which is the radius of the sphere, inside the drop, wherein the
density remains constant) while some are constant with respect to A (the pressure difference
Ap across the drop, the density p((0) at the drop centre and the equimolar surface tension
e). In addition, A does not influence the distribution of the fluid molecules inside the drop
(interior phase), in that a large drop does not always encompass a homogeneous phase, this
property depends only on the supersaturation.

In section 2 we outline, in brief, the mean-field theory (MFT) of the density profiles,
pressure tensor and surface tensions for a planar and spherical interface, with A being a
variable. Section 3 is devoted to the discussion of the numerical results, while in section 4,
we discuss the results and compare them with the ones for Ad = 1 [6].

2, Theory

2.1. Density profile

‘We consider the general grand potential functional for a one-component system (in the
absence of an external field)

Qylp(r) = fv dr(fh[p(rn +1o@) fv P yw(lr —/]) dr’ ch('r)) @1

where p(r) is the average number density at point r, i the buik vapour chemical potential
and V the volume of the system. The repulsive force contribution to the Helmholtz free
energy is treated in the local-density approximation in that fi[p(7)] is the Helmholtz free-
energy density of a uniform hard-sphere fluid at density p(r), while the attractive forces
are treated in mean-field approximation so that w(r) is the attractive part of the pairwise
potential between two fluid molecules [5—8].

The equilibriom density p(r) minimizes the functional (2.1) and, by setting
8Q2p(r)]/ép(r) = 0, the Euler~Lagrange equation resulis:

= ualp(m)] + fv w(lr —/)p(r) dr 2.2)

where uplp(m)] = dfle(r})/8p(r) is the hard-sphere chemical potential. When (2.2} is
substituted into (2.1) the equilibrium grand potential Qv results. The solution to the integral
equation (2.2), once w{r) is known, yields the density profile for a given geometry of the
system. However, (2.2) can be converted to a non-linear second-order differential equation
by choosing properly the interaction potential, because in this case the calculations become
less expensive and the numerical methods for the solution of differential equations are better
developed [1]:

w(r) = — (A fdm)e™V far. (2.3)
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Here o is
o= —f w(r)dr {2.4)
v

and A is an inverse range parameter; the influence of A on the system was overlooked since
Ad was put equal to unity previously. This is an arbitrary choice, mainly to simplify the
mathematical expressions and to make the calculations easier. In a way, this restriction on
A obscures its influence on the behaviour of the system; so we consider that this choice (i.e.
Ad = 1) is no longer valid and regard it as a confinuous variable taking positive values.

For the calculations that follow, the Carnahan-Starling equation of state for hard spheres
is adopted:

o) = pksT(L+n+n* — 12 /(1 — ) (2.5)

where # = mpd>/6 is the packing fraction, 7 the temperature and kg the Boltzmann constant.
The configurational part of the hard-sphere chemical potential is given by

() = kg Tlnn -+ @n — 99° + 39°) /(1 — n)*)]. (2.6)

The critical density o, and temperature T of the above model are given by the equations

[13:
ped’ = 0.249 a/(kpTed®) = 11.102. Q.7
Initially we assume spherically symmeiric solutions, g(r} = p(r), to equation (2.2) and

that the centre of the drop coincides with the origin of the coordinate axes. The integration
in (2.2) over the polar angles 8, ¢ can be done analytically:

o0
u=w@‘%£twme4be%w’ (2.8)

where ¥ = Ar, the dimensionless radial distance from the centre of the drop. By
differentiating twice the integral equation (2.8) with respect to u, we obtain

d? (i) 2dpn(e)
du? v du

pn(u) + o= —apu) (29a)

which is identical to that found in [6].

In the system under consideration (either with spherical or planar interface) A is
considered as an additional independent variable. The other independent variable is
r, so u cannot be treated, any longer, as the independent variable in (2.94), since it
contains both A and r. Instead, another spatial variable is introduced by the transformation
u = Ar = {’Ad){(r/d) = Awv, so that (2.9q) is transformed into

Epp@) | 2 dun)

e un()IA? = —aA?p(v) (2.95)

and X is now separated from r. The new reduced radial distance is now the variable v = r/d
and A = Ad is the reduced inverse range parameter.
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The differential equation (2.95) is supplemented by the proper boundary conditions,

which are identical to those in [6], i.e.

10y =0 pn(00) = 1y

fp(e0) =0

(2.10)

so that the solution to (2.95} is bounded; the prime denotes differentiation with respect to

distance.

Considering as dependent variable the packing fraction #(v) instead of uy(w), on
substituting the Carnahan~Starling relation (2.6) in (2.90) it yields, for u # 0,

17"(v) = =2/v)n W) = Bi(mn(v) — A*[Ba(n) + Ba(mIn(w)] (2.11)

subject 10 the boundary conditions

70 =0 n(eo) =1y 7 (co) =0
where
_9(Bun) 1 8-=2p _ 841
A = o A=mF 4o = o R
A _
Bi(n) = % Bo(m) = &iﬁf_;m B3(m)
and B = (kgT)~".

T mAn)

2.12)

30 -6
TI_—T)Z (2.13a)
6as (2.135)

In the neighbourhood of the drop’s origin, the solution is expanded in a power series

about v = 0 (see [6]):

7)) = g + */2D1P ) + /407 ()
where ¢ = n{0) and the derivatives are

n®(0) = —1Ba(g) + ¢Bs(g)]

190 = -2 {28:@EPOF + 120 [(—-deZ(”)) +q
v=0

dn

asv—=0 (2.14)

(2.15a)

)t}

(2.158)

For the subsequent calculations, all the quantities and equations are transformed to the

dimensionless ‘reduced’ units:

p* =d’p/(ksT)
p* = pd®

= pnf(ksT)
y*=d*y/(ksT)

T*=T/T.

Thus
W™, T*) = py(e”, T*) —a*p*
pHp*. T*) = pf(o*, T — " p*?/2.

(2.16)

o =a/tkgTd>} =11.102/T*.

2.17)
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Figure 1. Attractive potential w*(A, v} == [4m/(11.102ke Te)Jw(A, v) versus (A, v).

Although the asterisks, for simplicity in the expressions, will be suppressed, all the results
will be with respect to the above dimensioniess variables (2.16). The interaction potential
(2.3) in terms of A and v can be written as

w(A, v) = —(11.102kp Tp /47 )Y A5 exp(—Av)/Av (2.18)

which is now an explicit function of the two variables A and v; its graph appears in figure 1.
The attractive potential w{A, v) as a function of A (constant distance v) has a minimum
given by the relation Av = 2, while for constant A it is an increasing function of the
distance, tending to zero as v diverges.

According to Gibbs phase rule, a cne-component two-phase system has only one degree
of freedom, and as such the temperature 7 is chosen here. In the present case, the system
with a planar interface has an additional degree of freedom, namely A. The system with
a spherical interface possesses two extra degrees of freedom, the bulk vapour density oy
(varying in the interval {(pyc, pysp), Where py is the vapour density for a planar dividing
surface at the same temperature T and pyp the cotresponding spinodal density) and the
reduced inverse range parameter A; this is not the only possible choice. For a given value
of T and py,; one can find an infinite number of drops that correspond to the possible values
of A; all these drops have identical bulk vapour density and density at the drop’s crigin
2(0) that is identical to the one for A =1 [6].

The variation of A also influences the behaviour of the liquid—vapour system with a
planar dividing surface. In this case the governing equation resulting from (2.2} is

(= pn(z) — % fo Zplz) (e 3l — emlrtaly dgf (2.19)

where z; = Az and the dividing surface coincides with the xy plane. When (2.19) is
differentiated twice with respect to zi, it yields

uy(z1)/dzf — palzr) + g = —ap(z1) (2.20)
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(see [1]). The solution to (2.20) has to obey the asymptotic behaviour
pr(co) = uf  uh(eo) =0. 2.21)

The differential equation {2.20) can be integrated once, yielding

dpn(z)/dzr = —{[pa(z1) — #1* — 20l pn(zs) — pI}'7? (2.22a)

on recalling (2.21), the minus sign in front of the square root is necessary because the bulk
phase is vapour and p is the bulk pressure {1].

As previously, the independent variable z; in (2.224) is replaced so that the A
dependence is separated from the z dependence. This is achieved through the transformation
21 = Az = (Ad)(z/d) = A¢ and (2.224) becomes

den($)/dE = —Allpn () — o — 20dpn(t) ~ p1}'72. (2.22b)

In (2.22b) we consider again as dependent variable the packing fraction (¢} instead of
#a{t). Thus on recalling the Carnahan—Starling relation (2.6), (2.225) becomes

dn(@)/de = —[A/ & M) — ul — 2alpaGr) — pl}'/2 (2.23)
where A:(n) is given by (2.13a).

2.2, Pressure tensor and surface tension

The system under consideration (with either a spherical or planar dividing surface) consists
of, at least, one homogeneous phase and one inhomogeneous. In the former case, the two
pressure tensor components (normal py and transverse pr) are equal to each other and
identical to the pressure of the respective phase. In the latter case, these components are
unequal and vary with distance, in general. The only condition satisfied by the pressure
tensor p(r) is the vanishing of its divergence owing to the mechanical equilibrium of the
system under consideration, i.e.

V-.p(r)=0 (2.24)

in the absence of an external field [6, 7].
The pressure tensor for a spherical interface consists of the normal pn(r) and transverse
pr{r) components, which are related by the eguation

p(r) = @/n)pr(r) — pr(n] (2.25)

a result of (2.24) for the respective geometry. Integrating (2.25) from inside to outside
yields

® pni{r) — pr(r) dr
r

Pr(0) — pr(oo) =2 fo (2.26)

The left-hand side can be considered as one of the possible definitions of the pressure
difference Ap across the drop. Equation (2.25) can also be regarded as a differential
equation for pn(r), once pr(r) is known, ie.

37 dpn(r)/dr + pn(r) = pr(r) (2.27a)
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so that
2 rr .
=5 f pr(ror dry. ©.275)
o

" The pr(r) component can be identified with minus the grand potential free-energy
density, i.e.

pr(r) = —wlpo(r)] ’ (2.28)
where pp(r) is the equilibrium density. On substituting (2.2) into (Z.1) we get
pr(r) = puloo()] + %po(r)f po(rw(r —r|)dr;. (2.29)
v

Multiplying (2.95) by 4 (v) and integrating from a point deep inside the drop to one
in the bulk vapour phase yields

[(e) — A% (un(o) — 1) + 20 A% pr(p) loutside — [t (0) = A2 (pn(0) — 10)* + 20 A2 P 0) inside

outside

= - f 2Py v, (2.300)
inside

The quantity in the bracket equals 2a.A%p(p) since p/ (v) vanishes at both ends and (2.30a)

can be written
outside

”

Pinside — Poutside = ji;side OdAzu'uh (v)dv (2.30b)

which is a generalization of the Young-Laplace equation. Its left-hand side can be

considered as another definition of the pressure difference Ap that monitors the variation
of the density profile in the interfacial region and inside the drop (for a small one).

Another important quantity is the surface tension, which depends on the position of the

dividing surface, in general. It is defined as the grand potential per unit surface area and,

in the reduced units (2.16), is given by (see [6])
1 o0
(A = —— L) dv+ AR, A 2.31
Y{Ry: Ap) IV [o [vpp ()] dv+ 5AR, Ap (231)

where R, is the radius of the dividing surface. For the radius R,, there are various alternative
choices due to the different dividing surfaces. One such choice is the radius R, of the surface
of tension, given by

2 o
3 __ . 2
R = A IAD P./o [vpe, (v)]° du (2.32a)

for which the curvature term in the Helmholtz free energy vanishes and the Young-Laplace
aquation retains its form [7]
Ap = 2p(R)/R,. (2.328)

Another choice for R, is the radius R. of the equimolar dividing surface, given by the
equation [7]

1 © .d
RP=—— f v“%'fldu. (2.32¢)
Pvs — PLs Jo v

The mechanical route to the surface tension is defined through the relations (2.324, &),
while the thermodynamic route is defined through (2.325, ¢) and

Ry = [3Y00 — (9¥%, — 4¥eoReAp)' P/ Ap (2.32d)
see [6,7]. -
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3. Results

3.1. Density profiles

The differential equation (2.11) with the boundary conditions (2.12) was solved for various
values of the two independent variables 7, and A at a fixed reduced temperature T* = (.8
used also in [6). The variable n,; assumes values within the interval (7ve, Mvsp), Where
v = 0.02171809 is the coexisting vapour packing fraction and nyg = 0.061099 63 the
corresponding spinodal packing fraction.

Let RT(A) be the reduced smallest distance from the centre of the drop where the
density p(r, A) assumes its bulk value py. It was found in the numerical calculations that

RE(A) = Rp(A = 1)/A G.1a)
resulting from the more general expression
RI(A1Y/ RT(D2) = Aaf Ay (3.15)

So, instead of specifying A, R}(A) is given a value and A is calculated from (3.1a)
once RF{A = 1) is known. The chosen values for RF(A) were 50, 40, 30, 20, 10 and
RT(A =1). Equation (2.11) was solved for pys = 0.05, 0.075 and Q.1. Their plots appear
in figure 2 and each individual density profile} in any plot is labelled by the corresponding
A. The density profile for p,, = 0.05 (small supersaturation} is characterized by the
presence of a homogeneous phase inside the drop, evidenced by the straight line on the left-
hand side of the profile, even for the smallest drop RT(A) = 10 (Rpom is non-vanishing).
However, for the other two densities (pys = 0.075 and 0.1, high supersaturation) the extent
of the homogeneous phase inside the drop is hardly perceptible even for the largest drop
R3{A) = 50, i.e. the behaviour of the density profiles in these cases is nearly identical
to that for A = 1, s0 Rym is now negligible. This behaviour was also observed for
very large radii, R7(A) = 100, 500, 1000 and 1500, for o,y = 0.05 and 0.1 (figure 3).
These resuits indicate that a large drop, which may encompass a homogeneous phase (a
necessary requirement of Laplacian thermodynamics) for a given bulk vapour density oy
(small supersaturation), does not always do so for a larger p,s value. The existence or
not of a homogeneous phase inside a drop is independent of A and depends only on the
supersaturation, as in the case A = 1. Thus, although A is a variable, the potential (2.3)
cannot affect the structure of the system and the attractive forces behave as a uniform
background potential. The hard-sphere potential still dominates the structure; their only
effect is either to spread (that is, increase the extent of) or to contract the corresponding
density profile for A = 1 [6], to accommodate the particles of the interior phase into the
avaitable space, but without changing the corresponding structure. For the radii RT(A)
under consideration, the interfaces for p,; = 0.05 separate two homogeneous phases, while
for py; = 0.075 and py, == 0.1 the respective interfaces separate two phases that are either
inhomogeneous or negligibly homogeneous (Ryom negligible). This behaviour of the density
profiles, for a specified py, inside a drop is brought out by figure 4, where Ryqn is plotted.
For smail A (or equivalently, large drops) only for the smaller g, = 0.05 is Ry, significant
and the corresponding drops contain a homogeneous ‘bulk’ phase.

As the supersaturation is lowered, the bulk vapour density p, tends towards the pianar
interface density py, = 0.04147849 at the same reduced temperature T* = 0.8; the

$ Remark. The density profiles in figures 2 and 3 should tend smoothly to the respective bulk value but this was
not achieved as satisfactorily as in figure 6 owing to computational problems in (2.11).
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Figure 2. (a) Packing fraction 7(v, A} for gy, = 0.05 versus reduced radial distance v labelled
by A (i) 04459, (ii) 0.557 38, (iil) 0.743 17, (iv) 1, (v) L.11476, (vi) 2.229 52 (b) Packing
fraction n{v, A) for gy = 0.075 versus reduced radial distance » labelled by A: (i) 0.22218, (ii)
0.2777, {iii) 0.37031, (iv) 0.55546, {v} 1, (vi) L.1109. {¢} Packing fraction 5 (v, A) for pys = 0.1
versus reduced radial distance v labelled by A: (i) Q.187 86, (i) 0.234 83, (iii) 0.313 [1, (iv)
0.469 66, (v) 0.93932, (vi) |.
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Figure 3. {a) Packing fraction n{v, A} for py = 0.05 versus radial distance v for various
R3(A) values: (i) 1500, (ii) 1000, {ii) 500, (iv) 100. (&) Packing fraction n{v, A) for pys = 0.1
versus reduced radial distance v for various RF(A) values: (i) 1500, (if) 1000, (ii) 500, (iv)
100.

governing equation is (2.23), which also depends on A. In this case, the system is not
finite but extends from —co to -+oc; it behaves as a very large drop corresponding to the
density pyc. This behaviour depends strongly on A, in the sense that the smaller the A the
wider is the interfacial region and the longer is the distance from the origin of the axes, the
density p{Z, A) attains its bulk value p,., because the attractive forces are now of longer
range. The existence of the homogeneous phase in the left-hand part of the density profile
(liguid phase with density pr. = 0.58673131) is now more evident (see figure 5).

3.2. Pressure tensor and surface tension

After the calculation of the density profile, all the other interfacial quantities can be
evaluated. Either system under consideration (the one with spherical and the other with
planar interface} possesses a particular symmetry that is also reflected in the corresponding
pressure tensor p(r), which, in both cases, consists of the two principal components py(r}
and pr(r). First, we examine the system with spherical symmetty. Both components pn(r)
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Figure 5. Packing fraction (v, A) for the flat interface (with density pvc) at the same reduced
temperature 7% = (.8 versus reduced distance § for various A: (i} 0.187 86, (ii) 0.234 83, (iii)
0.313 11, (iv) 0.469 66, (v) 0.939 32, (vi) L.

~and pr(r) depend only on the radial distance r from the origin of the drop and are given by
(2.27h) and (2.29), respectively. For a given py, regardless of A, they vary significantly
within the interfacial region; but for v > RE(A) they join smoothly to their common value,
coinciding with the bulk vapour pressure p, (pr(c0) = pn(e0) = py); also both coincide
at v = 0 (figure 6). We also have the same situation as in the density profiles: for the drops
with oy = 0.05 (small supersaturation), both components possess a plateau, reflecting the
homogeneous phase existing inside the drop, which does not happen for the other two drops
with gy, = 0.075 and 0.1. For a specific py and its associated A values, the profiles of
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pn(r) and pr(r) are similar to those for A = 1, except that these are either spread if A < 1
or contracted if A > 1; also all the plots have the same minimum value occurring at different
radial distances. For all the profiles the interface is initially under tension (pn{r) > pr(r))
while for larger distances it is under compression (pn(r) < pr(r)) only for p,s = 0.05.

For the planar interface, pn(¢) is always constant, even in the interfacial region, and
equal to the bulk vapour pressure, pn(¢) = p(pw) = Pax for all ¢ and A valnes. While
pr() varies with distance according to (2.29), it is mainly smaller than pn() for all A
values, but becomnes greater only in a small region on the vapour side of the profile before
they join smoothly towards pg, (figure 7).
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Figure 7. Flat interface pressure tensor components at the same reduced temperature T = 0.8
versys £ for varous A: (i) 0.187 86, (ii} 0.234 83, (iii) 0.313 11, (iv) 0.465 66, The straight line

is pN(§) = paac

For a spherical interface, the pressure difference Ap is an ill-defined quantity (this does
not happen for a planar interface); as a result, this behaviour affects the surface tension
(2.31) and the radii (2.32q, 4), since both depend explicitly on Ap and A (see [6]). For the
numerical calculations, Ap was calculated from (2.304); although this expression depends
explicitly on A, the numerical result was not sensitive to A and thus Ap is a constant
for a given p,, and equal to that for A = I [6]. For the bulk vapour densities under
consideration {p,, = 0.05, 0.075 and 0.1) the corresponding surface tensions y; according
to the mechanical route and the surface tension yg. for the flat interface decrease as A
increases. They join smoothly at about A ~ 8, tending to zero as A -+ co, and they
seem to diverge as A — 0 (figure 8(a)). For A < 0.4 and A > 8 they vary slowly and
their difference is perceptible only in the interval 0.6 < A < 3. In addition to y,, for
density pys = 0.05 the surface tension Ymerm according to the thermodynamic route and
the equimolar ¥, were calculated (see figure 8(8)); Jpemn decreases as A increases and is
always below y;, while ¥, is constant with respect to -A, contrary to what one would expect.
This behaviour of . is a significant drawback, for it cannot be considered as a measure
of the surface tension; ¥, and ypem join smoothly and vanish as A — o0, and they differ
significantly only in the region 0.5 € A € 4.

The associated radii R, decrease as A increases for all bulk vapour densities; their
values reflect the extent of the corresponding drops. The radii R, for p,, = 0.075 and 0.1
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Figure 8. (a) Sucface tension 3 versus A labelled by the bulk vapour density pys: (i) 0.075, (ii)
0.05, between them is that for gy = 0.1, (i)} ¥ga {ove = 0.04147849). (b) Surface tensions
versus A for oy = 0.05 according to (i) mechanical route, (ii) thermodynamic route, (iii} ..

(large supersaturation) are nearly identical; they differ considerably with R, for p,s = 0.05
but, ultimately, they all join smoothly for A > 10, tending to zero as A — oo (figure 9(a)).
The other radii {Rierm, Ra) display a similar behaviour, as well. In figure 9(b) we plotted
Ry, Rigerm. Re for p,s = 0.05; R; and R, practically coincide (this does not imply that
Tolman’s length § = R, — R, vanishes), differ from Rgem, in the interval 0.5 < A < 6,
and they join smoothly at about A == 10, tending to zero as A — oc. These radii behave
similarly for the other two bulk vapour densities.
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Figure 9. {x) Radius R, of the surface of tension versus A according to the mechanical route,
(2.324) for various p,: (B) 0.05, (i) 0.075, (iii} 0.1. (&) Radii versus A for pys = 0.05: (i) R,
and Re, (i) Rierm.

4. Discussion

The repuisive forces play a primary role in the siructure of most fluids far away from the
critical region. However, the slowly varying attractive forces affect the structure in an
indirect way, in that the form of the density profile, as a function of A, is left unchanged in
comparison with the case A = 1, except that it is either shrunk (A > 1) or spread (A < 1}
to accommodate inside the drop the available number of particles of the interior phase for
each A. -

A necessary prerequisite of bulk thermodynamics is that a large drop encompasses
a homogeneous bulk phase so that Lacplace’s equation (2.326) is valid. However, this
condition is valid only in the case of small supersaturation. The volume of the drop cannot
affect the distribution of matter in its interior. A (attractive forces) determines the radius
RT of the drop while the distribution of particles of the interior phase is determined by the
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bulk vapour density oy (i.e. hard-sphere repulsions). Thus a large drop R} = 50, or even
a very large one Ry = 1500, encompasses a homogeneous phase for py, = 0.05 but it does
not for pys == 0.1. This distinct influence of repulsions and attractions on the system is also
reflected in the profiles of the principal tensors.

Both tensions y, and ppeny decrease on increasing A (or equivalently, on decreasing
the corresponding radii Ry and Ryerm) since the drop diminishes as A — oc. The tensions
w for py = 0.05, 0.075 and 0.1 and_ gy, as functions of A, coincide for A < 0.4 and
A = 5 (that is, for smaller and larger drops in comparison with those for A = 1). Thus, it
is sensible to use yqy in place of y; for this range of A values. An interesting result is that
Ye, on the one hand, is constant as a function of A and, on the other, exhibits a distinctly
different behaviour in comparison with 94 and yiwerm although their corresponding dividing
surfaces are very close to each other. This peculiar behaviour of y. is due to the way the
equimolar dividing surface is defined through the surface excess density, which is

1 Ry =]
T(R,) = ( A o) — pLslrdr + j; [p(r)—pvs]rzdr) “.1)

B
where R, is the radius of the dividing surface. The equimolar dividing surface is determined
by the condition I'(R.} = 0. As a result of this requirement, the equimolar interface contains
an equal number of particles on either side, ie,

R =]
fo loLs — p(DIrtdr = fR [o(r) — pu)ridr. 4.2)

So there are no excess particles in the interface under consideration for any A, which would
change the value of . as a function of A. Thus . remains constant and is determined
solely by the bulk vapour density which, in turn, is determined by the repulsive (hard-
sphere) forces. However, whatever finite value any of the surface tensions assumes, the
work of formation of a drop

W = (4m/3)R%y (4.3)

ultimately vanishes as R — 0.
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